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Abstract

When using the Oliver—Pharr method, the indented specimen is assumed to be a perfectly flat surface, thus ignoring the influences
of surface roughness that might be encountered in experiment. For nanoindentation measurements, a flat surface is fabricated from
curved specimens by mechanical polishing. However, the position of the polished curved surface cannot be controlled. There are no
reliable theoretical or experimental methods to evaluate the mechanical behavior during nanoindentation of an elastic—plastic
microsphere. Therefore, it is necessary to conduct reliable numerical simulations to evaluate this behavior. This article reports a
systematic computational study regarding the instrumented nanoindentation of elastic—plastic microspherical materials. The ratio
between elastic modulus of the microsphere and the initial yield stress of the microsphere was systematically varied from 10 to
1000 to cover the mechanical properties of most materials encountered in engineering. The simulated results indicate that contact
height is unsuitable to replace contact depth for obtaining the indentation elastic modulus of microspherical materials. The extracted
elastic modulus of a microsphere using the Oliver—Pharr method with the simulated unloading curve depends on the indentation
depth. It demonstrates that nanoindentation on microspherical materials exhibits a “size effect”.

Introduction

Instrumented nanoindentation is the most commonly used tech-  erties of materials can be determined from the analysis of inden-
nique for the characterization of the mechanical behavior of tation load—displacement data alone. This avoids the need to
filaments [1], thin films [2], microplastics, coatings, powders, measure the area of indentation by imaging and facilitates the
small crystals, and other materials at small scales. One of the measurement of properties at the sub-micrometer scale. During

great advantages of the technique is that many mechanical prop- nanoindentation, a diamond indenter with a geometry known to
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high precision is pressed into the surface of the specimen with
increasing force or displacement. After force or displacement
reached a specified value, the load is withdrawn. During the
loading—unloading process, force—displacement curves are re-
corded. Taking one complete cycle of loading and unloading
data, three quantities are measured. One is the maximum load,
another is the maximum displacement /1,5 (the maximum dis-
placement of the indenter relative to the initial undeformed
surface), and the third is the unloading stiffness. The initial
unloading stiffness is used to extract the elastic modulus of the
specimen via the well-known Oliver—Pharr method [3,4].

Cheng and Cheng derived several scaling relationships for
conical indentation in elastic—plastic solid materials with work
hardening via dimensional analysis [5]. Oliver and Pharr
reviewed the methodology of measuring elastic modulus and
hardness by instrumented indentation [6]. The elastic and
plastic properties of materials when employing a sharp indenter
(geometrically self-similar indenters such as Vickers, Pyramids,
Berkovich, or Cones) may be computed from a single load—dis-
placement curve through a general theoretical framework pro-
posed by Giannakopoulos and Suresh [7]. Their procedure is
usable to precisely calculate the indentation response from a
given set of elastic—plastic properties (forward algorithms), and
to extract elastic—plastic properties from a given set of indenta-
tion data (reverse algorithms) [8]. Pileup (or sink-in) results in
contact areas bigger (or smaller) than the cross-sectional area of
the indenter at a specified depth. These effects can result in
measurement errors of mechanical properties [9]. Without
taking into account that the real contact area and the cross-
sectional area of the indenter are different, the measured inden-
tation modulus/hardness would be too high in the case of pileup
and too low in the case of sink-in [10]. Nix and Gao deduced
the theory of strain gradient plasticity to interpret the “size
effect” of indentation as an increase in physical quantity with
the decreasing depth of penetration [11]. Experimental results
show that the size effect of indentation for pyramidal and spher-
ical indenters can be correlated [12]. For a spherical (parabolic)
indenter, hardness does not depend on depth, but on the radius
of the indenter. Therefore, for spherical indentation, the radius
of the impression rather than the depth of penetration deter-
mines the size effect of indentation [12]. Swadener et al.
pointed out that, for some cases, the hardness is decreased with
decreasing depth due to the predicted decrease in dislocation
density [12].

The indented specimen is assumed to be a perfectly flat surface
for the Oliver—Pharr method, thus ignoring the influences of
surface roughness that might be encountered in experiment. For
nanoindentation measurements, a flat surface is fabricated from

curved specimens by mechanical polishing. However, the posi-
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tion of the polished curved surface cannot be controlled [13].
Small-scale microplastics with curved structures require materi-
al characterization. The materials properties are not affected by
the geometry of the specimen, but the Oliver—Pharr procedure
to obtain material properties will vary depending on the geome-
try of the specimen. There has been no reliable theoretical and
experimental method to evaluate the mechanical behavior
during nanoindentation of a curved specimen. Therefore, it
is necessary to conduct reliable numerical simulations to eval-
uvate the mechanical behavior of nanoindentation on an
elastic—plastic microspherical material. The numerical simula-
tions are usually carried out via the finite element method [14-
25]. Using finite element simulation, Li et al. found that both
loading curve and unloading curve at any depth can be gener-
ated from one indentation depth by scaling P o 42 for the inden-
tation tests of PMMA thin films with a Berkovich indenter
[1,2]. The loading curve can be described by the formula [1,2]:

o Etand e

P=
(1-v?)

6]

where P is the indenter load, a is a material constant, E and v
are the elastic modulus and Poisson’s ratio of the specimen, ¢ is
the half-apical angle of the indenter, and # is the displacement
of the indenter relative to the initial undeformed surface. It is
not easy to find an explanation why different unloading curves
have this relationship of P o< h2.

In this study, the finite element method has been used to
systematically investigate the mechanical behavior of nanoin-
dentation on elastic—plastic microspherical materials. The
elastic modulus of nanoindentation was calculated via the
Oliver—Pharr method. We found that the contact height [26] is
unsuitable to replace the contact depth for obtaining the inden-
tation elastic modulus of microspherical materials.

Theoretical Method

The analysis of Sneddon for the indentation of an elastic half
space by a flat, cylindrical punch leads to a simple relation be-
tween P and & of the form [27]

_4Ga
1-v

P

h, )

where a is the radius of the cylinder and G is the shear modulus.
Noting that the contact area (i.e., the projected area or cross-
sectional area of elastic contact) A is equal to ma? and that the
shear modulus is equal to E/[2(1 + v)], differentiating P with

respect to & leads to
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where S = dP/dh is the initial stiffness of the unloading curve,
defined as the slope of the upper portion of the unloading curve
during the initial stages of unloading (also called contact stiff-
ness), and E is the elastic modulus of specimen. For a
Berkovich indenter, the half-apical angle is 70.3°, and the area-
to-depth relationship, also known as the area function, is given
by

A=245h2, )

where A is the cross-sectional area of the indenter at contact
depth A, a distance that is measured vertically from its tip.
Knowing the contact depth and the shape of the indenter, deter-
mined through the “area function”, the contact area is then de-
termined. If contact stiffness and contact area are known, Equa-
tion 3 and Equation 4 can be used to determine the elastic

modulus of a material.

Effects of non-rigid indenters on the load—displacement behav-
ior can be effectively accounted for by defining an effective

elastic modulus through Equation 5:

1 _(1—v2)+(1—v,.2)
Eg  E E

1

)

where E; and v; are the elastic modulus and Poisson’s ratio of
the indenter. If the indenter is a rigid body (i.e., E; = «), for any
axisymmetric indenter, the effective elastic modulus E¢ can be
derived as [6]

T S
Eopp =———. 6
eff =75 ” (6)

Combining Equation 5 and Equation 6, one obtains

NE

E:Eeff(l—vz)ZTﬁ(l—Vz)- )

The elastic modulus extracted from the Oliver—Pharr method
depends on the initial stiffness of the unloading curve and the
projected area of the indentation at the contact depth hc. To
correct the Oliver—Pharr solution accounting for the radial dis-

placements, Hay et al. used the finite element method to cali-
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brate Equation 7 and included a “correction factor” § [28]. The
correction factor depends on the half-apical angle of the

indenter and the Poisson’s ratio of the material

2ENA
S: D )
B(1—VZ)JE )

where B is the correction factor, and E is the elastic modulus
extracted according to Equation 8. Oliver and Pharr proposed
that § = 1.05 with a potential error of approximately +0.05,
based on their analysis of available results 1.0226 < § < 1.085
from experiments and finite element calculations [6].

Finite Element Method

To evaluate the mechanical behavior of microspherical materi-
als and to reduce the number of experimental tests, finite ele-
ment simulations are used to calculate the load—displacement
curves of nanoindentation during loading and unloading. The
unloading curve is used to determine the elastic modulus of a
material via the well-known Oliver—Pharr method. Finite ele-
ment analyses of nanoindentation tests were carried out on
isotropically linear elastic and isotropically perfectly plastic
microspherical materials. Based on symmetry, only one half of
the microsphere was modeled. Figure 1a and Figure 1b show
the two 2D axisymmetric finite element models of a micro-
sphere with 11.5 um radius and a microsphere with 23 pm
radius, respectively, in which two-dimensional CAX4R (contin-
uum, axisymmetric, quadrilateral four-node reduced integra-
tion) and CAX3 elements were used in the mesh discretization
of the microspherical materials. The whole model in Figure 1a
consists of 28,651 elements and 28,538 nodes. In order to

reduce the calculation time as well as to simulate the nanoin-

Figure 1: Finite element mesh: (a) one half of a microsphere with
11.5 pm radius; (b) one half of a microsphere with 23 pm radius;
(c) enlargement of the refined mesh at the vicinity of conical indenter.
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dentation behavior more accurately, a finer mesh with a higher
density of elements close to the contact region, as shown in
Figure 1c, and a gradually coarser mesh further away from the
contact region were used. The nodes in red shown in Figure la
and Figure 1b are fixed in all directions. The mesh was well
tested for convergence, that is, further refinement would not
result in improving the accuracy of the simulated results. A
rigid conical indenter with a half-apical angle of 70.3° was set
on the top of the microsphere. It was assumed that a Berkovich
indenter can be adequately modeled by an axisymmetric conical
indenter since its depth-to-area relation is the same as that of an
actual Berkovich indenter. The indentation was displacement-
controlled by imposing a vertical displacement on the rigid
conical indenter. The contact between the indenter and the

microsphere was frictionless.

The calculation steps of nanoindentation simulation can be de-
scribed as follows [1,2]:

1. Construct an axisymmetric model of a microsphere and
generate its finite element mesh.

2. Assemble a finite element model by placing a rigid
Berkovich indenter at the top of the microsphere as
shown in Figure 1.

3. Impose a specified vertical displacement on the indenter
using incremental steps.

4. After attaining the maximum displacement, the vertical
displacement of the indenter is gradually reduced and is
unloaded to zero using another incremental step.

5. Calculate the force acting on the indenter to obtain the
loading curve and unloading curve as shown below in
Figure 2.

Results and Discussion

Dimensional analysis is widely used as a guideline for evalu-
ating indentation tests and is also used here. Yan established a
set of non-dimensional relations for conical indentation on a ho-
mogeneous, isotropic semi-infinite flat substrate, including the
quantity E/oy [15]. oy is the initial yield stress of a linear elastic,
perfectly plastic material. oy/E is the initial yield strain.
Phadikar showed that /,,,,4/R (R is the radius of a microsphere)
is an appropriate non-dimensional factor [18]. Therefore, we
selected the quantities E/0y and /i,x/R to present our results. In
order to examine the effect of E/Oy on indentation, the Poisson’s
ratio of the microsphere was set to be 0.2. The ratio between
elastic modulus and yield stress of a microsphere, E/oy, was
systematically varied between 10 and 1000 to cover the me-
chanical properties of the materials most commonly encoun-
tered in engineering. For example, an elastic—plastic material
with E/oy = 70 and E/oy = 300 is fairly typical for a polymer

and aluminum, respectively (low-density polyethylene with
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E = 1.37 GPa, oy = 20 MPa, and E/O'y ~ 69; aluminum with
E =70 GPa, Oy = 228 MPa, and E/oy ~ 307).

Figure 2 shows curves of the microsphere with 11.5 um radius
being indented to different depths by a rigid conical indenter to
produce different maximum loads. The loading curves for dif-
ferent indentation depths superpose and follow exactly the same
loading curve. The residual depth after complete unloading is
larger for deeper indentations. The area under the unloading
curve is the reversible elastic strain energy. The area enclosed
by the loading and unloading curve is the irreversible energy
lost to plastic deformation. The area under the loading curve is
the total energy of the indentation. The total energy and the re-

versible energy are proportional to the cube of the maximum
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Figure 2: Loading and unloading curves for different indentation
depths for E/ay = 10.

Figure 3a and Figure 3c show the loading and unloading curves
for different E/oy at indentation depths of 0.115 pm and 0.5 pm,
respectively. As shown in Figure 3a and Figure 3c, the indenter
displacement for E/oy = 200-1000 is plastic, and only a small
portion of elasticity is recovered on unloading due to the fact
that the deformation of materials with large E/oy is dominated
by plasticity. The surface around the indenter piles up. Howev-
er, the indenter displacement for E/oy, = 10-50 is more elastic.
Hence, a larger portion of elasticity is recovered on unloading.
The surface around the indenter sinks in. For highly elastic
solids, such as polymers, sink-in is often observed [5].
E/oy =100 is a critical value for surface pileup or sink-in. The
surface near a conical indenter with a half-apical angle of 70.3°
has a tendency to pile up around the indenter and forms a crater
when E/oy is greater than 100. However, when E/oy is less than
100, the surface near a conical indenter with a half-apical angle
of 70.3° sinks in. The load of each curve in Figure 3b and

Figure 3d is normalized with respect to the maximum load from
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Figure 3: Loading and unloading curves for different E/oy: (a) original curves at indentation depth 0.115 pm; (b) curves normalized by the maximum
load at indentation depth 0.115 um; (c) original curves at indentation depth 0.5 pm; (d) curves normalized by the maximum load at indentation depth

0.5 um.

Figure 3a and Figure 3c, respectively. As shown in Figure 3b
and Figure 3d, all loading curves superpose. This means that all
loading curves in Figure 3a and Figure 3c are proportional for
different E/oy, and all loading curves for different materials can
be generated from a single indentation.

Since the elastic modulus is deduced directly from the contact
area through Equation 8, the error of the contact area derived
from the indentation load—displacement data has important
effects for experimentally accurate determinations of the elastic
modulus. To show how large the error is, the actual contact
areas have been used to calculate the Oliver—Pharr modulus via
finite element analyses. Figure 4a shows the elastic modulus
extracted using the Oliver—Pharr method normalized with
respect to input elastic modulus in the finite element code,
Eop/E, as a function of the normalized maximum indentation
depth, hip,ax/R. The initial unloading slope was computed using
the two points associated with the maximum load and the first
unloading point as shown in Figure 2, Figure 3a, and Figure 3c.
Then, the Oliver—Pharr modulus Eqp can be obtained accord-

ing to Equation 8. The value of contact depth i¢ extracted from

finite element simulations is equal to the theoretical value ob-

tained from the Equation 10 as follows:

1-v?) S
Eop/E=B=|— 22 9
or/E=P=\25 2z he ©)
2(m-2
he = hyax — (n K rgax. (10)

The values of Egp/E in Figure 4a correspond to the “correction
factor” in Equation 9 extracted from the Oliver—Pharr method.
The correction factor is not a constant. It decreases with the
increase of normalized maximum indentation depth. It demon-
strates that the nanoindentation of microspherical materials ex-
hibits a size effect. The deviation in the correction factor as
shown in Figure 4a is around 9%. This means that the extracted
elastic modulus of a microsphere using the Oliver—Pharr
method from the simulated unloading curve depends on the
indentation depth. As shown in Figure 4a, the extracted correc-

tion factor of nanoindentation simulations on a microsphere of
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Figure 4: Normalized elastic modulus Eop/E as a function of the maximum indentation depth for different microsphere radii: (a) variable oy, contact
depth hc is used; (b) variable E and oy, contact depth hc is used; (c) using the contact height hc from Equation 11.

23 um radius is completely congruent with that of 11.5 um
radius when the value of maximum indentation depth normal-
ized with respect to microsphere radius is the same. Figure 4b
shows that as long as the ratio between elastic modulus of the
microsphere and the initial yield stress of the microsphere, E/oy,
is the same value, the calculated Eqgp/E is equal for the same
indentation depth. This means that as long as E/oy has the same
value, it has the same result when E or oy is varied. Taking an
example, if oy = 500 MPa, the elastic modulus is varied from
5 GPa to 500 GPa.

As shown in Figure 4c, the contact depth /A is replaced with the
contact height h'C :

, ) hmax -R
he =cos”™ ¢

C 2 2 2
'max tan ¢ - hmax tan ¢

+(R? +2Rn )1/2 b

where ¢ is the half-apical angle of the indenter. A full deriva-
tion of the contact height and Equation 11 is available in [26].

As shown in Figure 4c, the deviation of the correction factor to
unity is about 23% and 12% for E/oy = 10 and E/oy = 20, re-
spectively. The results show that when the actual contact depth
is replaced with the contact height, the material properties of
microsphere depend on E/oy. Therefore, the contact height is
unsuitable to be used to replace the contact depth.

Figure 5 shows the final depth A (the residual depth relative to
the initial undeformed surface) as a function of the ratio be-
tween the maximum indentation depth and the microsphere
radius, hpy,¢/R. The final depth increases nonlinear with the
increase of E/oy and hpax/R. When the value of E/oy is in-
creased from 10 to 20, the final depth increases from 0.58 to
0.79 pum at hpyc/R = 0.1. Figure 6 shows the loading and
unloading curves for E/oy =10 (E = 10 GPa, oy = 1 GPa;
E = 20 GPa, oy = 2 GPa) and E/oy = 20 (E = 10 GPa,
Oy = 0.5 GPa; E =20 GPa, Oy = 1 GPa) at an indentation depth
of 1.15 pum. Figure 6a clearly shows that the final depths after
indentation are equal for the same values of E/oy. As shown in

Figure 6b, all loading curves superpose. This substantiates that
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the loading curve for different materials can be generated from

a single indentation.

The stress distribution inside the microsphere at any time during
indentation, the residual stress distribution inside the micro-
sphere, and the permanent deformation of the microsphere have
been predicted via finite element analyses. Figure 7 shows the
stress fields at maximum indentation force, the permanent de-
formation, and residual stress distributions inside a micro-
sphere of 11.5 um radius after full unloading. In the purely
elastic contact solution, material always sinks in, while for
elastic—plastic contact, material may either sink in or pile up.
The fundamental material property affecting pileup is the ratio
between elastic modulus and yield stress, E/oy. Pileup is greater
in materials with larger E/oy ratios, such as soft materials. Hard
materials and most polymers, ceramics, and glasses have small

E/oy ratios. As E/oy decreases, corresponding to increases in the

1.0+
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Figure 6: Loading and unloading curves for E/o, = 10 and E/oy = 20 at an indentation depth of 1.15 um: (a) original curves; (b) curves normalized by

the maximum load.

(a)

(c)

Figure 7: Stress distribution inside a microsphere of 11.5 um radius for an indentation depth of 1.15 um at £/0y = 10: (a) at maximum load; (b) after

complete unloading; (c) enlarged image of the residual stress distributio

n.
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yield stress and decreases in hg/hy,y, the size of the plastic zone
decreases until, at some point, the plastic zone boundary at the
surface coincides with the contact perimeter indicating the tran-
sition from pileup to sink-in behavior. Whether a microspher-
ical material piles up or sinks in during nanoindentation corre-
lates to the size of the plastic zone as shown in Figure 7. As
shown in Figure 7c, the surface around the indenter sinks in.

Conclusion

A systematically computational study has been undertaken to
simulate the instrumented nanoindentation of elastic—plastic
microspherical materials. The ratio between elastic modulus of
the microspherical material and the initial yield stress of the
microspherical material was systematically varied from 10 to
1000 to cover the mechanical properties of most materials en-
countered in engineering. Simulation results indicate that the
loading curve for different materials can be generated from a
single indentation. The value of contact depth extracted from
simulations is equal to the theoretical value. Contact height is
unsuitable to be used to replace contact depth for obtaining the
indentation elastic modulus of microspherical materials. The
calculated elastic modulus of a microspherical material using
the Oliver—Pharr method with the simulated unloading curve is
found to depend on the indentation depth. This demonstrates
that nanoindentation of microspherical materials exhibits a “size
effect”.
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